AIRCRAFT ICING (AI)

Thomas B. Irvine
Acting Level II AI Project Manager
NASA Lewis Research Center

NASA Ames Research Center January 15, 1999

http://www.icebox.lerc.nasa.gov/

OUTLINE & LIST OF FIGURES

AI

Acronyms

Project Overview

Goals & Objectives; Approach; Deliverables; Milestones; Project Funding

Outside Relationships

Technology Transfer

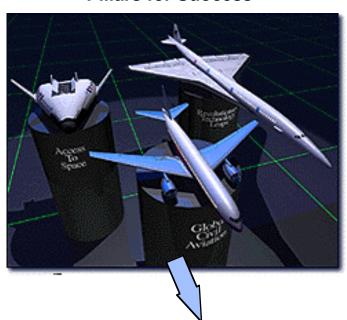
Accomplishments

Facility Utilization

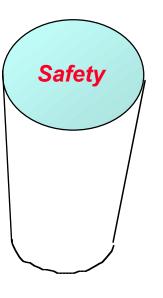
Financial Performance

Summary

ACRONYMS & ABBREVIATIONS


- AEDC Arnold Engineering Development Center
- AES Atmospheric Environmental Services
- AGATE Advanced General Aviation Transport Experiment
- AI Aircraft Icing
- ALPA Airlines Pilots Association
- AOC -
- AOS Aviation Operations Systems
- ATM -
- CIRA Centro Italiano Recerche Aerospazialli
- COMET Cooperative Program for Operational <u>Meteorology</u>, Education & Training
- CRREL Cold Regions Research Engineering Lab
- DER Designated Engineering Representative
- DERA Defence Establishment Research Agency
- DOD Department of Defense
- FAA Federal Aviation Administration
- FAR Federal Aviation Regulations
- GA General Aviation

- INTA -
- IP Ice Protection
- IPS Ice Protection System
- LSWT Low Speed Wind Tunnel
- LTPT Low Turbulence Pressure Tunnel
- MIT Massachusetts Institute of Technology
- NCAR National Center for Atmospheric Research
- NOAA National Oceanic and Atmospheric Administration
- NRC National Research Council of Canada
- ONERA -
- SBIR Small Business Innovative Research
- SLD Supercooled Large Droplets
- STTR -
- TIP Tailplane Icing Program
- UIUC University of Illinois Urbana-Champaign
- WSU Wichita State University
- W.T. Wind Tunnel

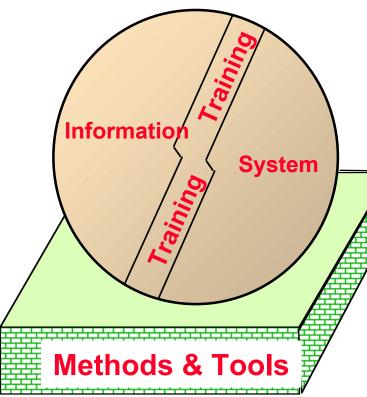

GOALS

NASA's Aeronautics & Space Transportation Technology: Three Pillars for Success

Pillar One: Global Civil Aviation

Aircraft Icing Research

"Reduce accident rates due to icing hazards"



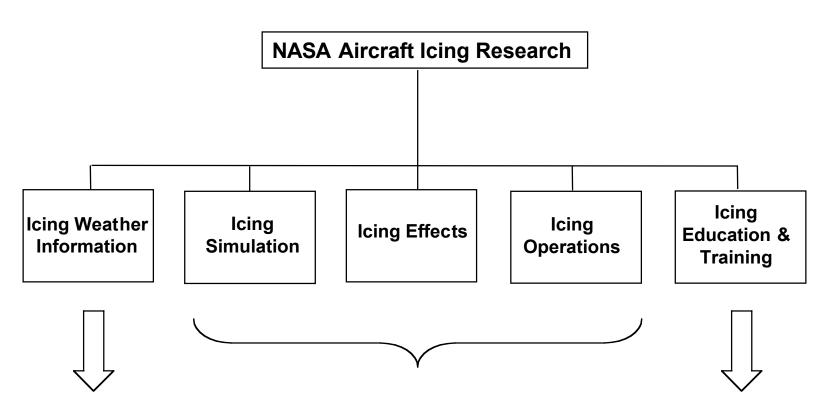
"Reduce time and cost of design and certification of icing systems"

OBJECTIVES

AI

Develop methods and tools as the foundation to provide information and technology solutions for the aviation system.

- Reduce cost and time for design and certification of icing systems
- 2 Train pilots and operators to use information and systems in the safest manner
- Develop aircraft systems for all icing weather operations
- Provide icing weather information to cockpit, AOC, and ATM


The training aids link how the information is managed in the system.

PROJECT APPROACH

AI

Major Technology Elements

OBJECTIVE (4): Info to pilots/dispatchers OBJECTIVES (1) & (3):
Reduce cost & time for cert.;
All-Weather Aircraft

OBJECTIVE (2): Safe & proper use of info/systems

DELIVERABLES

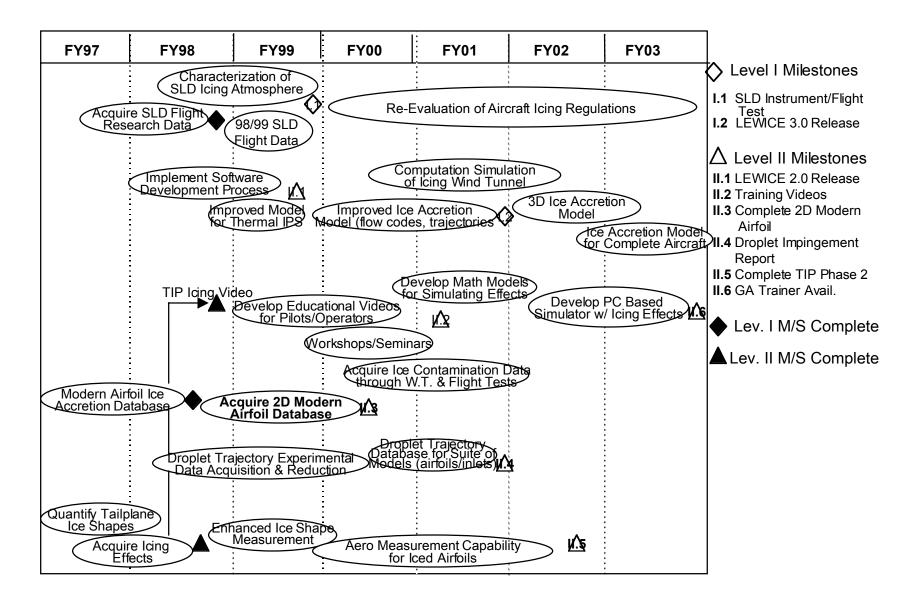
AI

Icing Weather Information

- OAtmospheric Characterization: Provide to regulatory agencies data acquired and analyzed from flight tests for purposes of evaluating icing certification envelopes (See Lev I and Lev II milestones)
- OWeather Products: With meteorological research organizations, develop and implement icing weather forecast models

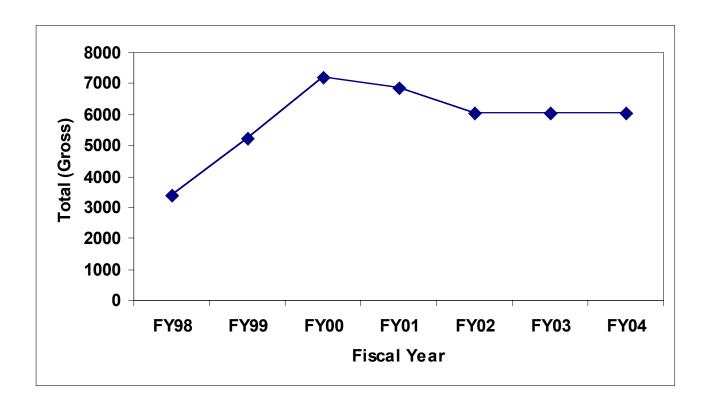
Icing Simulation

- OComputational Methods: Improve ice accretion and ice protection system prediction methods thus allowing use of codes for design and certification over a range of icing conditions, aircraft geometries and flow conditions (See Lev I and Lev II milestones)
- OExperimental Methods: Develop improved capabilities and innovative methods to represent natural ice growth, quantify ice feature characteristics, measure effects of icing on aircraft performance, and evaluate Ice Protection Systems in a controlled environment
- OScaling: Improve and extend icing scaling capabilities to a broader range of icing conditions including near freezing temperature applications and over a range of icing facilities

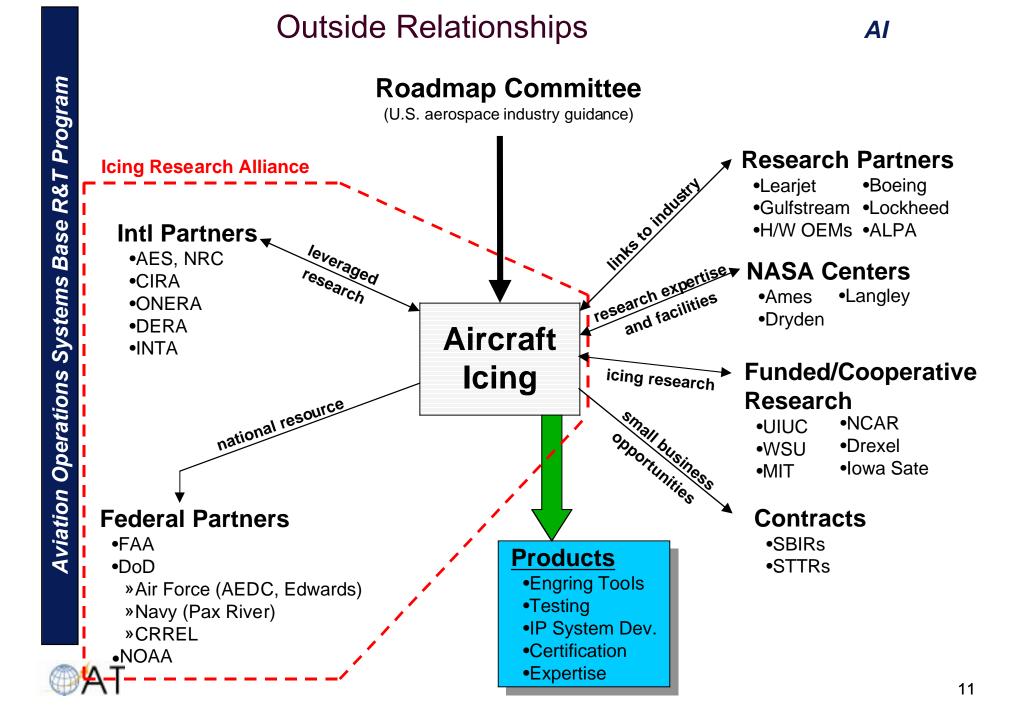


DELIVERABLES (Cont.)

- Icing Effects: Develop techniques to represent the effects of ice contamination on aero characteristics and to quantify the impact on performance, stability, controllability and handling qualities (See Lev II milestones)
- Icing Operations: Develop techniques allowing aircraft to avoid icing conditions and/or tolerate icing conditions
 - Olcing Avoidance
 - ■Ensure on-board weather systems include icing weather information
 - Develop and field test ground-based and airborne icing conditions remote sensors (See Lev III milestones)
- Icing Education & Training
 - OEducation Material: Develop educational videos for increasing pilot awareness of icing hazards incl. Tailplane Icing, Supercooled Large Droplets and Icing Primer (See Lev. II milestones)
 - OSimulator Development: Provide pilots with ground-based demonstrator that will supply realistic simulation of an in-flight icing encounter (See Lev II milestones)
 - OPilot/Dispatcher Training: Produce interactive module for pilots and dispatchers that include key icing weather factors and issues



ROADMAPS & MILESTONES



Project Funding

Nov-99	FY98	FY99	FY00	FY01	FY02	FY03	FY04	Total
Net Totals	2379	3772	5222	5033	4565	4574	4574	30119
Program Support	984	1466	1975	1826	1472	1463	1463	10649
Total (Gross)	3363	5238	7197	6859	6037	6037	6037	40768

TECHNOLOGY TRANSFER

Al

<u>Product</u>	Standards & Requirements	<u>Partners</u>	Customers
LEWICE	Icing Certification FAR Part 23 And 25	UIUC	Numerous Industry incl. FAA DERs
Icing Research Tunnel (Develop- ment/Certification)	FAR Parts 25, 29 (1) Appendix C (2) Ice Protection System Perf.		Numerous Industry, e.g., Sikorsky S-92, Bell Helicopter 609, Bom- bardier Global Express
Icing Training Aids • Videos (e.g., TIP) •Computer based icing weather training module •Desktop simulators	FAA Flight Standards	FAA, ALPA, WSU	GA Pilots, Regional Pilots, Large Transports
SLD Database	Exceedance Conditions	FAA, AES, NCAR	Airline Operators
Consulting •Icing Expertise •Computational Assets	Safety, Certification Stds		FAA, DOD, Aerospace Industry

MAJOR ACCOMPLISHMENTS (FY98)

- AOS Lev I Milestone: Complete Icing Tunnel Database of Ice Shapes for Modern Airfoils (6/98)
 - O2D ice shapes obtained and catalogued for large transports, business jets and GA aircraft
 - ODatabase will be used for ice shape prediction, code verification and validation, and guidance for ice protection system design
- AOS Lev I Milestone: Complete NASA/FAA/NCAR SLD icing flight program (9/98)
 - OCompleted NASA/FAA/NCAR Supercooled Large Droplet 97/98 icing flight testing
 - OData analyzed to better characterize SLD clouds and to improve forecasting models
 - OData presented to FAA for regulatory material review and NCAR for weather prediction tool development
- ●AOS Lev I Milestone: Complete flight test and instrumentation comparison for the NASA/AES joint supercooled large droplet icing program (4th Q, 99)
 - OCompleted wind tunnel entry wherein numerous cloud characterization instruments were tested in a controlled/repeatable environment
 - O98/99 flight tests planned; AES collaboration on instrumentation and data acquisition, reduction and analysis

MAJOR ACCOMPLISHMENTS (FY98)

- AOS Lev I Milestone: Release computational prediction tool LEWICE Ver. 3.0 to industry
 - ODevelopment of code requirements, standards and acceptance criteria on-schedule
 - OConfiguration management concerns (e.g., version control, distribution policies) being established
- •Al Lev II Milestone: LEWICE Ver. 2.0 Release
 - Olcing physics (roughness, heat transfer, transition) improved via grants with UIUC, lowa State, and Drexel
 - OCompleted validation activities including ice shape computational methods, comparison of computed and experimental ice shapes and expansion of experimental database
- •Al Lev II Milestone: Release 2nd series of icing pilot training videos
 - OTask review held with Cooperative Program for Operational Meteorology, Education & Training (COMET); Training module development requirements finalized
 - OEstablished gov't/contractor team including Ames/Lewis/COMET
 - OCompleted AGATE funded GA survey for icing training needs assessment

MAJOR ACCOMPLISHMENTS (FY98)

- ●Al Lev II Milestone: Complete Tailplane Icing Program (Phases 1 and 2)
 - OTIP I Final Report released
 - OTIP educational video released; 250 copies distributed (150 copies to FAA flight standards)
 - OCooperative effort initiated with Learjet for Phase 2 related tailplane icing test in the IRT and full scale aero effects testing in the ARC 40X80
- Al Lev II Milestone: Provide GA/Commuter community a PC-based simulator and training module for icing effects in light aircraft
 - OSigned grant with Wichita State University to develop experimental database and 6 degree-of-freedom nonlinear mathematical model required for training simulator
 - OMilitary trainer sub-scale aircraft tested in Wichita State University 7X10 LSWT and Birhle Applied Research vertical flow tunnel to determine viability of measuring ice contamination levels on very small subscale models

OTHER ACCOMPLISHMENTS (FY98)

- Experimental Methods
 - OContinued further development of hybrid airfoil test techniques
 - OImplemented 3D laser scanner for ice shape quantification
 - OLeading "Facility Comparison Test", a comparison of the performance of 8 ground simulation facilities in North America and Europe; completed IRT test
- Icing Effects
 - OContinuing effort with UIUC to quantify ice contamination induced roll upset; work being performed for FAA and AGATE
- Icing Operations (Avoidance)
 - ONASA AGATE contract with NCAR to examine icing weather information in the GA cockpit
 - OGrant with MIT for human centered design approach to examine integrated cockpit icing weather information systems
- Icing Operations (Remote Sensing)
 - OInteragency Agreements signed with:
 - CRREL for planning and meteorological requirement definition
 - Hanscom AFB for simulator code development
 - OContract/SBIR/STTR signed with:
 - SPEC/NCAR for satellite system assessment
 - **■**TSC for airborne radar assessment
 - Raytheon for radiometer assessment

AI FACILITY UTILIZATION

AI

•FY99

- **OLeRC** Icing Research Tunnel
- OLeRC Icing Research Aircraft (Twin Otter)
- **OLaRC LTPT**
- **OARC 40X80 LSWT**
- OWichita State Univ. 7X10 LSWT
- Ohio State University 7X10 LSWT
- **OBF** Goodrich Ice Protection Systems Division Icing Wind Tunnel
- OBoeing Research Aerodynamic Icing Tunnel
- OCox & Co. LeClerc Icing Research Tunnel
- OBirhle Applied Research Large Amplitude Multi-Purpose Facility

•FY00

- **OLeRC Icing Research Tunnel**
- OLeRC Icing Research Aircraft (Twin Otter)
- OBoeing Research Aerodynamic Icing Tunnel
- OWichita State Univ. 7X10 LSWT
- OOther (Unspecified) Low Speed Wind Tunnels

Project Assessment

Al

	3 Q 98	4Q98	1Q99	Remarks
Program Overall Assessment	G	G	G	
Technical Performance	G	G	G	
Cost	Y	G	G	Costing of Grants caused cost variance; Corrected by end of FY
Schedule	Y	G	G	SLD data reduction caused delay in completion of SLD flight program Lev II milestone; Corrected
	Guidance	<u> </u>		

Guidance:

-2Q Red

FUTURE FY 99 Activities

AI

Icing Weather Information

- OSLD flight tests to start 1/99 w/ NCAR/AES; continue data reduction and analysis for regulation review and weather prediction tool development
- OHold workshop (Summer 99) on SLD instrument comparison test results; continue assessment and cross-comparison of instruments

Icing Simulation

- OCompletion of software re-engineering and release of LEWICE 2.0; initiation of new icing physics models for LEWICE 3.0
- OFacility Comparison Test: lead effort to quantify comparison of test results from multiple facilities to see how well ground simulation facilities produce ice accretion shapes under identical test conditions
- OContinue to develop and refine methods for performing valid scale model icing tests

Icing Effects

OTailplane icing effort will concentrate on icing tests (2nd Q 99) and low speed wind tunnel tests (4th Q 99) of Learjet 45 horizontal stab; Results will establish relationship between full- and scale-model testing

Icing Operations

- OComplete remote sensing system requirements; identify concepts for ground-based measurement and detection systems
- OMulti-agency experimental validation database test at Mt. Washington

Icing Education and Training

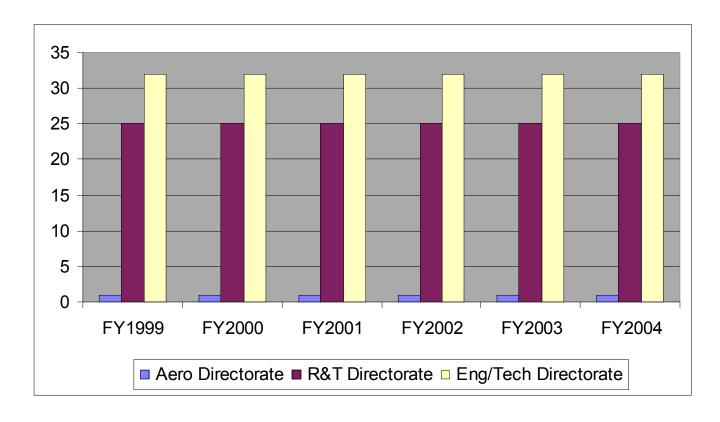
- OProduce training videos, "Icing Primer" and "SLD Icing"
- OContinue development of experimental database from wind tunnel performance data for training simulator

SUMMARY

- Aircraft Icing project strongly linked to Global Civil Aviation pillar and safety related goals
- Project management metrics (cost, schedule, performance) are all positive (green)
- Project has been re-scoped to make AI more relevant to Code R, and to the needs of the aeronautics community, e.g., icing weather tasks, pilot training development
- Project has entered into significant relationships with a multitude of domestic and foreign organizations with positive benefits to Code R and to aviation safety
- The Icing Research Alliance has been defined in concept and a steering committee formed to startup, structure and charter the alliance
- Most significant threat to the project continues to be a workforce shortfall; struggling to meet commitments with current (and projected) civil servant staff

Backup Slides

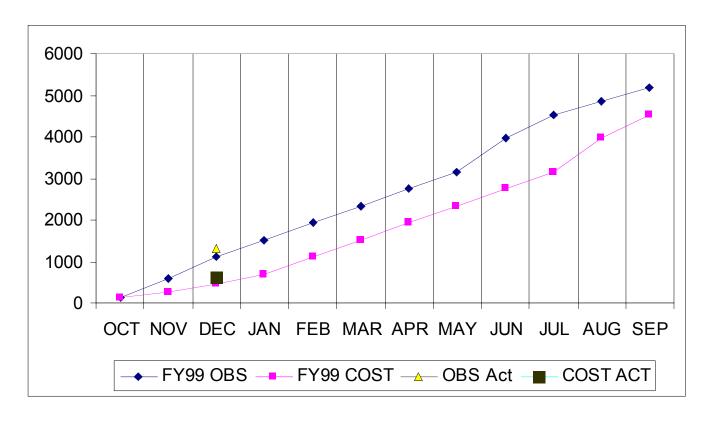
PROJECT APPROACH


AI

Develop technology elements and integrate at system level to demonstrate readiness needed to address key elements of icing flight safety

Development Integration **Demonstration Environment** Characterization Strategic Icing Weather Information **Accurate Forecast** Icing Effects on Perf, S&C **Icing Weather Capability Smart Icing Systems Tactical Icing Avoidance** Systems Technology **Remote Sensing Tolerance** Advanced Ice Protection Icing Operation Education **Icing Operations Icing Simulator**

Workforce Profile



Directorate	FY1999	FY2000	FY2001	FY2002	FY2003	FY2004
2000	1	1	1	1	1	1
5000	25	25	25	25	25	25
7000	32	32	32	32	32	32
TOTAL	58	58	58	58	58	58

FY99 FINANCIAL PERFORMANCE

Al

PLAN	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
FY99 OBS	134	584	1099	1510	1920	2331	2742	3153	3964	4526	4853	5180
FY99 COST	134	269	452	687	1099	1510	1920	2331	2742	3153	3964	4526
ACTUALS												
FY99 OBS	n/a	n/a	1307	tbd								
FY99 COST	n/a	n/a	630	tbd								
VARIANCE												
FY99 OBS			208									
FY99 COST			178									

Aviation Operations Systems Base R&T Program

FY98 FINANCIAL PERFORMANCE

Al

RTOP	Guide- line	OBS Plan	OBS Actual	OBS Variance	Cost Plan	Cost Actual	Cost Variance
548-20	1863	1770	1851	81	1547	1509	-38
548-21	1500	1426	1432	6	1246	1189	-57
TOTAL	3363	3196	3283	87	2793	2698	-95

